
Week 11 Lab 8-2 – Interfaces

Write implementing classes for a Game interface and create and use an

abstract class, including demonstrating polymorphism. For extra credit,

create a Coin class that implements Comparable.

A. Create two classes that implement a Game interface:
1. There is a Game interface defined in the Week 11 Chapter 8

Source Code folder, and also a PlayGames class that uses

objects from classes that implement that interface. The Game

interface declares a single abstract method play that returns an

int, the score from playing the game, where bigger is better.

2. PlayGames creates and stores Game objects in a Game[] and

uses a popRandom method to randomly choose one of the

games to play next by running that object’s play method.

3. There is an example of one such game, AdditionGame, that

implements the Game interface. PlayGames creates an

AdditionGame object and stores it in the Game[] array.

4. You must write at least 2 more classes that implement Game,

store objects from those classes in the Game[] array in

PlayGames, and run PlayGames to test that they work. You will

test them manually by interacting with PlayGames, not by

writing specific tests in a main method.

B. Create and use an abstract class:
Modify the Animal class to be abstract and change its greet method
to be abstract:

1. Changing Animal on in-class slide 5 to be abstract should only
take two changes. The greet method should no longer have a
method body.

2. Also, write the Friendly interface shown in the slides and
change Animal to implement it.

3. Create a simple Dog class that looks like the one shown in the
inheritance slides and have it extend Animal. Its greet method
must @Override the abstract greet method in Animal and fully
define it. Note that Dog can not reuse Animal’s greet, because
there is no longer a greet definition in Animal.

4. Write a main method either in Dog or in a separate class that
creates a Dog object, assigns it to a Dog reference variable, and
runs that object’s greet method:
 Dog d = new Dog("fido"); d.greet();

5. Also in main assign that Dog object or another new one to an
Animal reference variable and run its greet method:
 Animal a = d; a.greet();

6. Finally in main assign a Dog object to a Friendly reference
variable and run its greet method: :
 Friendly f = d; f.greet();

All of these should work properly, using Dog’s greet. You have just

demonstrated polymorphism and dynamic or late binding!

C. Extra Credit: Create a class that implements Comparable:
For extra credit, create a Coin class with instance variables private
String name (like “nickel”), private double value (like .05), and private
double weight (like 5  grams) and a 3-parameter constructor to set
all of them, and have that class implement Comparable:

1. The class has the single constructor mentioned above plus
setters for all three instance variables; you can use those setters
in the constructor if you want.

2. Also write a toString method whose String contains all three
instance variables.

3. To implement Comparable, define a
 public int compareTo(Object other)
method that works as follows:

• It uses instanceof to check if Object other is a Coin; if not,
it returns 1.

• It uses downcasting to assign other to a new Coin
reference variable.

• It returns String’s compareTo result if not 0; if 0, return a
result comparing the value of the two Coins; if they have
the same value, compare their weight.

4. Write a main method that creates a small Coin[] (say, length 5)
and fill it with Coin objects that are not ordered, then run
Arrays.sort on the array and finally print the Coin objects from
the array to see if they have been sorted properly.

This exercise is worth 7 extra credit points.

Show me or our TA your program source code and how it works.

