
Week 7 (Chapter 6) Lab 2

Write a Methods class containing various types of methods and do Chapter 6

Practice Program 3 (a test program for the Pet class), For extra credit, write

a Parent class that has a Person instance variable named child and protect it

from change.

1. Do these method creation exercises:

• Create a class called Methods that has a single instance variable
private int x, then write the following six methods in the class:

• A static method that takes no parameters, returns no value, and
prints “Hello, world!”

• An instance (non-static) method called print() that takes no
parameters, returns no value, and prints the current value of the
x instance variable like this: “x is: x”

• A setter method for the x instance variable, whose parameter
name is also x; remember the naming convention for setter
methods and their return type!
• The setter method must guarantee that x is never set to a

value less than 0
• If the setter argument is negative, it can either set x to 0 or

leave x unchanged

• A Methods constructor that takes one int parameter called x and
calls the setter method to set the value of the x instance variable

• A getter method for the x instance variable; remember the
parameter and return types for getter methods!

• A static void method called print(), whose single parameter is a
Methods object, that prints the value of its parameter’s x
instance variable – this is method overloading.
• Because this method is static, you do NOT invoke it as a

member of an object (e.g., object.print()). It is not an
instance method, and therefore is not connected to an
instance. You simply call it by name, with any appropriate
parameters

• This method can use either the object’s print() or its getter
method to do this

• Test your methods by creating a main method and calling the
methods that you have created.

2. Do Chapter 6 Practice Program 3 (modified), create a test program
for the Pet class:
• Use the class Pet in Week 7’s Source Code folder.

• Write a program to read data for three Pets and display the

following information, using the Pet instance methods:

• The names of the smallest and largest Pets (by weight).

• The name of the youngest and oldest Pets.

• The average weight of the three Pets.

• The average age of the three Pets.

• Hints: You can keep track of the smallest/largest and

youngest/oldest Pets as you are reading them in – once the

first one has been initialized you can assume it is the

smallest/largest and youngest/oldest to start, and then

compare later Pets against those. You can also accumulate

their weights and ages as they are being read in, starting from

0 for both. Be sure to calculate the average age as a double,

not by using integer division.

3. For extra credit, write a Parent class that has a Person instance
variable named child and protect it from change.

• The Parent class has two instance variables, their name as a
String and their child as a Person, using the Person class you
created in the Week 7 Lab 1 exercises, part 1.

• Create a Parent constructor that takes two parameters, a
String and a Person, and uses them to set the instance
variables.

• Also provide only getter methods for both name and child.

• Following the example in the in-class slides, protect the child
Person object from being changed by a user of the Parent class
– copy the Person object passed to the constructor when you
set the child instance variable, and copy the Person object in
child when the getChild getter method is called to return it.

• Finally, write a test program that shows that trying to use
Parent to modify the child object does not work.

• Hints: You can start from the original PetOwner class in the
Sakai Week 7 Source Code folder and modify it to be the
Parent class. You can then modify the Problems class from
that same Source Code folder to use the Parent and Person
classes, and then print information about the child before and
after the two Problem examples to show that no changes
were made in the child.

