
Week 9 Lab 7-2

Do an exercise to reverse an array in place, one to return a new array

with just the even ints in an int array, and one to create a flexible int

array; for extra credit, do Chapter 7 Exercise 8 (create and test an

Increasing class to check if a double array is strictly increasing); these

exercises are worth 4, 4, and 6 points; the extra credit exercise is also

worth 6 points.

A. Copy Reverser.java in the Chapter 7 Source Code folder, containing
the reverse method, to Reverser2.java and write and test a
reverse2() method:

1. reverse2 should have the following header:

 public static void reverse2(int[] a)

2. reverse2 should reverse the array a passed into the method in

place, that is, it will not return a new array, but instead will replace

the contents of the original array with its same items, but in

reverse order.

3. Hints: there are at least two possible ways to approach this:

• Simple: Use reverse() to create a new array with the a

array’s elements in reverse order, and copy them into a

• Complex: Use a for loop as in reverse(), but only go through

½ of the a array, and swap elements from start to end (you

might want to write a swap() method to help with this)

Show me your program source code and how it works, or submit on

Blackboard.

B. Write and test a CopyEvens.java program with a copyEvens() method
that returns a new array containing just the even numbers in its input
int array (if any):

1. copyEvens should have the following header:

 public static int[] copyEvens(int[] a)
2. copyEvens should go through the array a passed into the method

to determine how many even integers are in a, then create a new
array of that size and copy the even ints in a into the new array
and return it.
Hint: use a separate counter variable to fill up the new array as
you’re going through the a array in a for loop.

3. In addition, write a helper method countEvens() with this header:
 private static int countEvens(int[] a)
that counts the number of even ints in a and returns that count.
copyEvens should call the countEvens() method to determine the
size of its returned array.

Show me or our TA your program source code and how it works, or

submit on Blackboard.

C. Create and test a FlexArray class that grows an array as necessary:

• The class has one private int[] array; instance variable.
• The class has two constructors:

 public FlexArray(int size) // creates/sets array’s length
 public FlexArray() // calls this(10);  sets length to 10

• There is a method private void assure(int size) that makes sure
array has that many elements by using expand() or
Arrays.copyOf(array, size).

• There are two methods:
 public int get(int index) // returns the value at that index
 public void set(int index, int value) // stores that value
Both of these methods must check that index is valid, and if not
use assure() to make index valid (so that array.length >= index+1).

• There is a method that returns array.length: public int length().
• Finally, public void display(int length) displays length elements

from array, growing it if needed; public void display() shows all
current ones. These are two overloaded display() methods.

• Write tests for these methods in main to show that array growth
works.

Show me your program source code and how it works, or submit on
Blackboard.

D. Extra Credit: Do Chapter 7 Exercise 8: create and test an Increasing
class containing this method:
 public static boolean isStrictlyIncreasing(double[] in)

• isStrictlyIncreasing() returns true if each value in the given double

array is greater than the value just before it, or false otherwise.

• Hint: run a for loop starting at index 1 and compare each

element to the element at the current index minus 1 – if the

current element is less than or equal to the previous one, return

false. After the for loop, return true.

• Use the Java array initializer syntax to create a few double arrays

in main and check that isStrictlyIncreasing() returns the correct

true/false value for each. You might want to write a display()

method that will print double arrays.

Arrays you might try:

– new double[0] or { 3.4 } – length 0 or 1, should return true

– { 1.0, 2.0 } – should return true

– { 2.0, 2.0 } – should return false

– any other larger double array …

Show me your program source code and how it works, or submit on

Blackboard.

